Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 14 de 14
Filtre
1.
Disease Surveillance ; 37(10):1356-1362, 2022.
Article Dans Chinois | GIM | ID: covidwho-2155438

Résumé

Objective: To understand the RNA detection performance of SARS-CoV-2 Variants of Concern (VOCs) in 32 provincial or municipal CDC laboratories in COVID-19 surveillance network in China through an external quality assessment (EQA), and evaluate the clinical performance of the current SARS-CoV-2 nucleic acids detection kits used and provided by the participating laboratories.

2.
Microbiol Spectr ; 10(2): e0002622, 2022 04 27.
Article Dans Anglais | MEDLINE | ID: covidwho-1868712

Résumé

Consolidation is one complication of pediatric severe community-acquired pneumonia (SCAP) that can respond poorly to conservative medical treatment. We investigated the pathogens that cause pediatric SCAP including cases with persistent consolidation that need bronchoscopy intervention. Alveolar lavage fluid (ALF) samples collected from cases admitted to Children's Hospital of Fudan University with SCAP during January 2019 to March in 2019 were retrospectively tested by the RespiFinder 2SMART multiplex PCR (multi-PCR) assay targeting 22 respiratory pathogens. A total of 90 cases and 91 samples were enrolled; 80.0% (72/90) of the cases had pulmonary consolidation and/or atelectasis. All samples were positive with targeted pathogens tested by multi-PCR, and 92.3% (84/91) of the samples were co-detected with pathogens. Mycoplasma pneumoniae (MP) and adenovirus (ADV) as the two dominant pathogens, with the positive rates of 96.7% (88/91) and 79.1% (72/91), respectively. Most of the samples were positive with MP and ADV simultaneously. As a control, 78.0% (71/91) of the samples were positive by conventional tests (CT), in which MP had the detection rate of 63.9% (55/86) by a traditional real-time PCR assay, while ADV were positive in 13.1% (12/91) of the samples by a direct immunofluorescence assay (DFA). In cases with persistent pulmonary consolidation, the positive rates of pathogens by multi-PCR and CT were 100% (72/72) and 81.9% (59/72), respectively. There were no significant differences of MP or ADV positive rates between cases with and without pulmonary consolidation. MP and ADV most prevalent in pediatric SCAP cases required fiberscope intervention, and presented with coinfections dominantly. IMPORTANCE Pathogens that cause pediatric severe community-acquired pneumonia (SCAP) requiring bronchoscopy intervention are understudied. Through this study, we explore the etiology of SCAP form alveolar lavage fluid (ALF) samples by the RespiFinder 2SMART multi-PCR assay. It is observed that high mixed detection rates of Mycoplasma pneumoniae and adenovirus in ALF samples collected from hospitalized SCAP children experienced bronchoscopy intervention. Eighty percent of the cases had pulmonary consolidation and/or atelectasis. The presence of possible coinfection of these two pathogens might contribute to poor clinical anti-infection response. The results of this study might be helpful for the selection of clinical strategies for the empirical treatment of such pediatric SCAP cases.


Sujets)
Infections à Adenoviridae , Co-infection , Infections communautaires , Pneumopathie infectieuse , Atélectasie pulmonaire , Adenoviridae , Enfant , Co-infection/diagnostic , Infections communautaires/diagnostic , Humains , Nourrisson , Mycoplasma pneumoniae/génétique , Études rétrospectives
3.
ACS Med Chem Lett ; 12(11): 1838-1844, 2021 Nov 11.
Article Dans Anglais | MEDLINE | ID: covidwho-1507014

Résumé

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has stimulated the search for effective drugs for its prevention and treatment. Natural products are an important source for new drug discovery. Here, we report that, NK007(S,R), a tylophorine malate, displays high antiviral activity against SARS-CoV-2 with an EC50 0.03 µM in vitro, which is substantially lower than that of remdesivir (EC50: 0.8 µM in vitro), the only authorized drug to date. The histopathological research revealed that NK007(S,R) (5 mg/kg/dose) displayed a protection effect in lung injury induced by SARS-CoV-2, which is better than remdesivir (25 mg/kg/dose). We also prepared two nanosized preparations of NK007(S,R), which also showed good efficacy (EC50: NP-NK007, 0.007 µM in vitro; LP-NK007, 0.014 µM in vitro). Our findings suggest that tylophora alkaloids, isolated from the traditional Chinese medicine Cynanchum komarovii AL, offer a new skeleton for the development of anticoronavirus drug candidate.

4.
Infect Dis Ther ; 11(1): 165-174, 2022 Feb.
Article Dans Anglais | MEDLINE | ID: covidwho-1482329

Résumé

INTRODUCTION: Since the global outbreak of COVID-19, there has been a significant reduction in pediatric outpatient and emergency visits for infectious diseases. The purpose of this study was to analyze the changes in respiratory viruses in children with community-acquired pneumonia (CAP) in Shanghai in the past 10 years, especially in the first year after COVID-19. METHODS: We conducted a retrospective, observational study; the results for eight common respiratory viruses (respiratory syncytial virus (RSV), influenza virus A and B, parainfluenza virus 1-3 (PIV), adenovirus (ADV) and human metapneumovirus) tested by direct fluorescent antibody assays in hospitalized CAP cases in Children's Hospital of Fudan University during 2010-2020 were analyzed. RESULTS: Of the 5544 hospitalized CAP patients included in this study, 20.2% (1125/5544) were positive for the eight respiratory viruses. The top three pathogens were RSV, PIV3 and ADV, detected from 9.8% (543/5544), 5.3% (294/5544) and 2.0% (111/5544) of the samples, respectively. RSV had the highest positive rates among children < 2 years old. In 2020, the detection rate of all viruses showed a sharp decline from February to August compared with the previous 9 years. When the Shanghai community reopened in August 2020, the detection rate of eight viruses rebounded significantly in September. CONCLUSIONS: These eight respiratory viruses, especially RSV and PIV, were important pathogens of CAP in Shanghai children in the past 10 years. The COVID-19 pandemic had a significant impact on the detection rates for eight respiratory viruses in children with CAP in Shanghai.

6.
China CDC Wkly ; 2(25): 453-457, 2020 Jun 19.
Article Dans Anglais | MEDLINE | ID: covidwho-1449640

Résumé

WHAT IS ALREADY KNOWN ON THIS TOPIC?: A novel human coronavirus, known as SARS-CoV-2 or 2019-nCoV, is the causative agent of the coronavirus disease 2019 (COVID-19). We have released the primers and probes of real-time reverse transcription polymerase chain reaction (rRT-PCR) assays for the laboratory detection of COVID-19 infection. WHAT IS ADDED BY THIS REPORT?: Here we provide detailed technical data and evaluate the performance of three novel rRT-PCR assays targeting the ORF1ab, N, and E genes for detection of COVID-19 infection. The application of rRT-PCR assays among four types of specimens (alveolar lavage, sputum, throat swabs, and stool) from patients with COVID-19 indicated that the mean viral loads detected in sputum were higher than other specimens. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: These rRT-PCR assays reported here could be used for laboratory diagnosis of COVID-19 infection with high sensitivity, specificity, and applicability. Sputum rather than throat swabs and stool should be a priority for specimen collection for laboratory detection of COVID-19.

7.
China CDC Wkly ; 2(25): 447-452, 2020 Jun 19.
Article Dans Anglais | MEDLINE | ID: covidwho-1449635

Résumé

What is already known on this topic? Coronavirus disease 2019 (COVID-19), a disease caused by a novel human coronavirus named the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or COVID-19 virus, was reported in December 2019. Complete genomes of the COVID-19 virus from clinical samples using next generation sequencing (NGS) have been reported. What is added by this report? Here we provide the technical data for sequencing complete genome of COVID-19 virus from clinical samples using the Sanger method. Two complete COVID-19 virus genome sequences (named WH19004-S and GX0002) were obtained from clinical samples of COVID-19 patients, and two single nucleotide polymorphisms (SNPs) in ORF7a (T/C, nt 27,493) and ORF8 (T/C, nt 28,253) of WH19004-S were identified by Sanger sequencing. What are the implications for public health practice? The COVID-19 virus genome sequencing by Sanger method reported here could be used to generate data of high enough quality without requirement for expensive NGS equipment, which support sequencing complete genomes from clinical samples and monitoring of viral genetic variations of COVID-19 infections.

9.
Chin Med J (Engl) ; 134(17): 2048-2053, 2021 Aug 16.
Article Dans Anglais | MEDLINE | ID: covidwho-1360369

Résumé

BACKGROUND: With the ongoing worldwide coronavirus disease 2019 (COVID-19) pandemic, an increasing number of viral variants are being identified, which poses a challenge for nucleic acid-based diagnostic tests. Rapid tests, such as real-time reverse transcription-polymerase chain reaction (rRT-PCR), play an important role in monitoring COVID-19 infection and controlling its spread. However, the changes in the genotypes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants may result in decreased sensitivity of the rRT-PCR assay and it is necessary to monitor the mutations in primers and probes of SARS-CoV-2 detection over time. METHODS: We developed two rRT-PCR assays to detect the RNA-dependent RNA polymerase (RdRp) and nucleocapsid (N) genes of SARS-CoV-2. We evaluated these assays together with our previously published assays targeting the ORF1ab and N genes for the detection and confirmation of SARS-CoV-2 and its variants of concern (VOCs). In addition, we also developed two rRT-PCR assays (S484K and S501Y) targeting the spike gene, which when combined with the open reading frames (ORF)1ab assay, respectively, to form duplex rRT-PCR assays, were able to detect SARS-CoV-2 VOCs (lineages B.1.351 and B.1.1.7). RESULTS: Using a SARS-CoV-2 stock with predetermined genomic copies as a standard, the detection limit of both assays targeting RdRp and N was five copies/reaction. Furthermore, no cross-reactions with six others human CoVs (229E, OC43, NL63, HKU1, severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus) were observed using these assays. In addition, the S484K and S501Y assays were combined with the ORF1ab assay, respectively. CONCLUSIONS: Four rRT-PCR assays (RdRp, N, S484K, and S501Y) were used to detect SARS-CoV-2 variants, and these assays were shown to be effective in screening for multiple virus strains.


Sujets)
COVID-19 , SARS-CoV-2 , Humains , ARN viral/génétique , Réaction de polymérisation en chaine en temps réel , Transcription inverse , Sensibilité et spécificité
11.
J Enzyme Inhib Med Chem ; 36(1): 497-503, 2021 Dec.
Article Dans Anglais | MEDLINE | ID: covidwho-1045926

Résumé

COVID-19 has become a global pandemic and there is an urgent call for developing drugs against the virus (SARS-CoV-2). The 3C-like protease (3CLpro) of SARS-CoV-2 is a preferred target for broad spectrum anti-coronavirus drug discovery. We studied the anti-SARS-CoV-2 activity of S. baicalensis and its ingredients. We found that the ethanol extract of S. baicalensis and its major component, baicalein, inhibit SARS-CoV-2 3CLpro activity in vitro with IC50's of 8.52 µg/ml and 0.39 µM, respectively. Both of them inhibit the replication of SARS-CoV-2 in Vero cells with EC50's of 0.74 µg/ml and 2.9 µM, respectively. While baicalein is mainly active at the viral post-entry stage, the ethanol extract also inhibits viral entry. We further identified four baicalein analogues from other herbs that inhibit SARS-CoV-2 3CLpro activity at µM concentration. All the active compounds and the S. baicalensis extract also inhibit the SARS-CoV 3CLpro, demonstrating their potential as broad-spectrum anti-coronavirus drugs.


Sujets)
Antiviraux/pharmacologie , , Protéases 3C des coronavirus/antagonistes et inhibiteurs , Flavanones/pharmacologie , Extraits de plantes/pharmacologie , Inhibiteurs de protéases/pharmacologie , SARS-CoV-2/effets des médicaments et des substances chimiques , Réplication virale/effets des médicaments et des substances chimiques , Animaux , COVID-19/enzymologie , COVID-19/virologie , Chlorocebus aethiops , Découverte de médicament , Antienzymes/pharmacologie , Humains , Techniques in vitro , Modèles moléculaires , SARS-CoV-2/enzymologie , Scutellaria baicalensis , Cellules Vero
12.
Clin Infect Dis ; 71(15): 732-739, 2020 07 28.
Article Dans Anglais | MEDLINE | ID: covidwho-5562

Résumé

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first broke out in 2019 and subsequently spread worldwide. Chloroquine has been sporadically used in treating SARS-CoV-2 infection. Hydroxychloroquine shares the same mechanism of action as chloroquine, but its more tolerable safety profile makes it the preferred drug to treat malaria and autoimmune conditions. We propose that the immunomodulatory effect of hydroxychloroquine also may be useful in controlling the cytokine storm that occurs late phase in critically ill patients with SARS-CoV-2. Currently, there is no evidence to support the use of hydroxychloroquine in SARS-CoV-2 infection. METHODS: The pharmacological activity of chloroquine and hydroxychloroquine was tested using SARS-CoV-2-infected Vero cells. Physiologically based pharmacokinetic (PBPK) models were implemented for both drugs separately by integrating their in vitro data. Using the PBPK models, hydroxychloroquine concentrations in lung fluid were simulated under 5 different dosing regimens to explore the most effective regimen while considering the drug's safety profile. RESULTS: Hydroxychloroquine (EC50 = 0.72 µM) was found to be more potent than chloroquine (EC50 = 5.47 µM) in vitro. Based on PBPK models results, a loading dose of 400 mg twice daily of hydroxychloroquine sulfate given orally, followed by a maintenance dose of 200 mg given twice daily for 4 days is recommended for SARS-CoV-2 infection, as it reached 3 times the potency of chloroquine phosphate when given 500 mg twice daily 5 days in advance. CONCLUSIONS: Hydroxychloroquine was found to be more potent than chloroquine to inhibit SARS-CoV-2 in vitro.


Sujets)
Antiviraux/pharmacologie , Betacoronavirus/effets des médicaments et des substances chimiques , Infections à coronavirus/traitement médicamenteux , Hydroxychloroquine/pharmacologie , Pneumopathie virale/traitement médicamenteux , Syndrome respiratoire aigu sévère/traitement médicamenteux , Animaux , Antiviraux/pharmacocinétique , COVID-19 , Lignée cellulaire , Chlorocebus aethiops , Chloroquine/pharmacocinétique , Chloroquine/pharmacologie , Hydroxychloroquine/pharmacocinétique , Poumon/effets des médicaments et des substances chimiques , Pandémies , SARS-CoV-2 , Cellules Vero ,
13.
Lancet ; 395(10224): 565-574, 2020 02 22.
Article Dans Anglais | MEDLINE | ID: covidwho-80

Résumé

BACKGROUND: In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed. METHODS: We did next-generation sequencing of samples from bronchoalveolar lavage fluid and cultured isolates from nine inpatients, eight of whom had visited the Huanan seafood market in Wuhan. Complete and partial 2019-nCoV genome sequences were obtained from these individuals. Viral contigs were connected using Sanger sequencing to obtain the full-length genomes, with the terminal regions determined by rapid amplification of cDNA ends. Phylogenetic analysis of these 2019-nCoV genomes and those of other coronaviruses was used to determine the evolutionary history of the virus and help infer its likely origin. Homology modelling was done to explore the likely receptor-binding properties of the virus. FINDINGS: The ten genome sequences of 2019-nCoV obtained from the nine patients were extremely similar, exhibiting more than 99·98% sequence identity. Notably, 2019-nCoV was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, collected in 2018 in Zhoushan, eastern China, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%). Phylogenetic analysis revealed that 2019-nCoV fell within the subgenus Sarbecovirus of the genus Betacoronavirus, with a relatively long branch length to its closest relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21, and was genetically distinct from SARS-CoV. Notably, homology modelling revealed that 2019-nCoV had a similar receptor-binding domain structure to that of SARS-CoV, despite amino acid variation at some key residues. INTERPRETATION: 2019-nCoV is sufficiently divergent from SARS-CoV to be considered a new human-infecting betacoronavirus. Although our phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans. Importantly, structural analysis suggests that 2019-nCoV might be able to bind to the angiotensin-converting enzyme 2 receptor in humans. The future evolution, adaptation, and spread of this virus warrant urgent investigation. FUNDING: National Key Research and Development Program of China, National Major Project for Control and Prevention of Infectious Disease in China, Chinese Academy of Sciences, Shandong First Medical University.


Sujets)
Betacoronavirus/génétique , Infections à coronavirus/épidémiologie , Infections à coronavirus/virologie , Génome viral , Pneumopathie virale/épidémiologie , Pneumopathie virale/virologie , Récepteurs viraux/métabolisme , Betacoronavirus/métabolisme , Liquide de lavage bronchoalvéolaire/virologie , COVID-19 , Chine/épidémiologie , Infections à coronavirus/diagnostic , Infections à coronavirus/transmission , ADN viral/génétique , Réservoirs de maladies/virologie , Génomique/méthodes , Séquençage nucléotidique à haut débit/méthodes , Humains , Phylogenèse , Pneumopathie virale/diagnostic , Pneumopathie virale/transmission , SARS-CoV-2 , Alignement de séquences
14.
N Engl J Med ; 382(8): 727-733, 2020 02 20.
Article Dans Anglais | MEDLINE | ID: covidwho-8

Résumé

In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.).


Sujets)
Betacoronavirus/isolement et purification , Infections à coronavirus/virologie , Poumon/imagerie diagnostique , Pneumopathie virale/virologie , Adulte , Betacoronavirus/génétique , Betacoronavirus/ultrastructure , Liquide de lavage bronchoalvéolaire/virologie , COVID-19 , Cellules cultivées , Chine , Infections à coronavirus/imagerie diagnostique , Infections à coronavirus/anatomopathologie , Cellules épithéliales/anatomopathologie , Cellules épithéliales/virologie , Femelle , Génome viral , Humains , Poumon/anatomopathologie , Poumon/virologie , Mâle , Microscopie électronique à transmission , Adulte d'âge moyen , Phylogenèse , Pneumopathie virale/imagerie diagnostique , Pneumopathie virale/anatomopathologie , Radiographie thoracique , Appareil respiratoire/anatomopathologie , Appareil respiratoire/virologie , SARS-CoV-2
SÉLECTION CITATIONS
Détails de la recherche